Injury Blog | Camberwell Sports & Spinal Medicine

Injury Blog > Exercise For Osteoporosis

Search Blog Entries


Sort Practitioners by Name

All Blog Entries
Guest Posts
Alice England
Alice Tulloch
Caroline Sanguinetti
Emily Sanguinetti
Genevieve Scott
James Unkles
Jennie Carson
Julien Devin
Kelsey Thomas
Kim Van Hoorn
Kobi Phelan
Lachlan White
Megan Dickinson
Sam Bugeja
Travis Bateman
Trevor Spencer
Vaughan Ackland

The Best Expertise.

Maintaining the best results requires knowledge and expertise. Our athletes train and so do we, through our professional development program. Meaning that when a practitioner the treats you, they have the most advanced injury care knowledge. Read about what our practitioners are thinking in the injury blogs below.

Exercise For Osteoporosis

Facebook Google Twitter Email

October has been World Osteoporosis Awareness Month. Most people understand what osteoporosis is and what it means in relation to bone health. However despite promising evidence, there is something of a knowledge gap amongst the general public in terms of what can be done through diet and exercise to minimize and prevent the risk of osteoporosis.

According to the Australian Bureau of Statistics as many as 4 out of 5 people with osteoporosis are unaware they have it, despite being at risk of fracture. 4.74 million Australians over the age of 50 either have osteopenia or osteoporosis.  And by 2022 it is anticipated that there will be a fracture every 2.9 minutes associated with poor bone health in Australia.

Osteoporosis is a condition affecting the structure and metabolic health of bones, in essence making bones weaker and decreasing their ability to absorb impacts. The spine, hip, and wrists are most commonly affected and are often sites of fractures for the elderly. This is important, because as we age, decreased bone mineral density predisposes an individual to an osteoporotic fracture. With fractures in this age group contributing significantly to morbidity and decreased quality of life, it highlights the importance of implementing strategies to successfully manage osteoporosis.

A randomized control trial by Bailey and Brooke-Wavell examined the effects of performing 50 hops per day in 61 premenopausal women. Over 6 months, those who performed 50 hops seven times per week increased their bone mineral density by 1.8%, whilst those performing 2 or fewer sessions a week showed no change or even a loss in bone mineral density. Similar results have also been replicated in post-menopausal women. These findings highlights that weight bearing impact exercises are effective in improving and minimizing the effect of age related bone mineral density loss. And that exercise is a powerful stimulus for good bone health in both young and older individuals irrespective of current bone health.

Whilst ‘impact’ exercise may seem counter-intuitive and perhaps harmful for those with weakened bones. It is important to understand that bone, like muscle, requires a level of stimulation to increase metabolic and cell activity. With muscle we can do this through resistance exercise, and this allows our muscles to grow stronger. The same can be done to bone through weight bearing exercise that stimulates bone remodeling and growth. Unlike muscles which adapt quickly, bones don’t have the same blood supply or cellular activity, and as a result bony adaptation is a longer and slower process, with complete skeletal remodeling taking 7+ years.  

Current consensus statements from Osteoporosis Australia and Cochrane Reviews support a combination of Vitamin D and calcium supplementation enhancing the effects of impact exercises performed 3-5 times per week, with 50-100 weight bearing impacts per session to create a meaningful improvement in bone mineral density. Supplementation alone is ineffective in creating positive changes in bone mineral density. Exercises can be as simple as step-ups, star jumps, side-side jumping, bounding or stomping. Further exercise including resistance exercise, aerobic exercise, and fall prevention strategies are also recommended to ameliorate and decrease risk of osteoporotic fractures. 

If you or someone you know has osteoporosis or are concerned, please speak with your GP to perform all the appropriate checks and discuss a management plan. For those who have osteoporosis, it is critical that advice regarding new exercises is obtained through a qualified health professional to ensure appropriate loading, progression, and safety. The team at CSSM are perfect for that!

For further reading and resources please see Osteoporosis Australia.

About The Author:

Trevor Spencer is a Physiotherapist with a strong interest in exercise rehabilitation for athletes and the general population.  In addition to his physiotherapy qualifications, Trevor has qualifications in Exercise and Sports Science.  

 

 

References:
- www.osteoporosis.org.au/sites/default/files/files/Burden%20of%20Disease%20Analysis%202012-2022.pdf

- Bailey, C. and Brooke-Wavell, K. (2010). Optimum frequency of exercise for bone health: Randomised controlled trial of a high-impact unilateral intervention. Bone, 46(4), pp.1043-1049.

- De Matos, O., Lopes da Silva, D., Martinez de Oliveira, J. and Castelo-Branco, C. (2009). Effect of specific exercise training on bone mineral density in women with postmenopausal osteopenia or osteoporosis. Gynecological Endocrinology, 25(9), pp.616-620.

- Sinaki M, Itoi E, Wahner HW, et al. Stronger back muscles reduce the incidence of vertebral fractures: a prospective10 year follow-up of postmenopausal women. Bone 2002;30:836-41.

- Maddalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcified Tissue Int 2000;66:399-404.

-Howe TE, Shea B, Dawson LJ, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane DB Syst Rev 2011, Issue 7. Art. No.: CD000333. DOI: 10.1002/14651858.CD000333.pub2.

- Bass SL, Naughton G, Saxon L, et al. Exercise and calcium combined results in a greater osteogenic effect than either factor alone: a blinded randomized placebo-controlled trial in boys. J Bone Miner Res 2007;22:458-64.

- Allison, S., Folland, J., Rennie, W., Summers, G. and Brooke-Wavell, K. (2013). High impact exercise increased femoral neck bone mineral density in older men: A randomised unilateral intervention. Bone, 53(2), pp.321-328.